Bio-aesthetics: giving a new face to smile enhancements

Author: Dr Didier Dietschi, Switzerland

Bio-aesthetics is the quintessence of biology, biomechanics and aesthetics and aims to more conservative, ethical solutions to a myriad of aesthetic deficiencies.

Introduction

A more attractive smile, improved dental aesthetics and durable results have been for long intimately linked to ceramic restorations such as veneers and crowns and remain strongly anchored in patients and dental professional minds. Modern composite resin technology has however challenged this assumption because they offer excellent aesthetic potential and acceptable longevity, with a much lower cost than equivalent ceramic restorations for the treatment of both anterior and posterior teeth.1–3 Moreover, composite restorations allow for minimally invasive preparations or no preparation at all when modifying existing tooth anatomy or assuming the replacement of decayed tissues; this constitutes an unparalleled advantage of “free-hand bonding” also due to its relative simplicity. This rationale has been the foundation of a new concept named “bio-aesthetics”, giving priority to additive, minimally or microinvasive procedures to preserve tooth biology and biomechanics.

While resin composites are universally considered the “standard of care” material for the filling of small to medium class III, IV and V cavities, they can be used today in many more indications such as the correction of small to moderate aesthetic and functional deficiencies.2,3–6 Recent developments in composite optical properties and physical properties have also significantly contributed to simplifying their application and improving treatment outcome and predictability.6–8 The aim of this short article is then to demonstrate the potential and multiple applications of composite as a modern aesthetic restorative material in the context of bio-aesthetic treatment approach.
Choosing the right restorative approach (direct or indirect, composite or ceramics) has been debated over decades and finally, the decision largely depends on the practitioner’s own education background and experience with each of the aforementioned options. Only “extreme” special composites

This rationale has been the foundation of a new concept named “bio-aesthetics”, giving priority to additive, minimally or microinvasive procedures to preserve tooth biology and biomechanics.

Fig. 1a & b. Pre-operative views of a young patient presenting relatively large diastemas distally to lateral incisors. The case is complicated by improper occlusal relationship with lower canines which reduce the space available for restorations.

Fig. 1c-e. Post-operative views showing an improved smile configuration using “no-prep” direct composite restoration (inspiro, Edelweiss DR). This treatment illustrates the “bio-aesthetic” philosophy which truly represents a breakthrough in modern restorative dentistry.
Figs. 2a & b. Pre-operative smile of a young patient presenting post-orthodontic enamel hypocalcifications and asymmetrical shorter incisors.

Fig. 2c. A free-hand mock-up was made to assess the ideal length for an optimal smile configuration.

Fig. 2d. Post-treatment view showing better smile balance and harmony, following micro-abrasion (to remove white spots) and direct bonding (inspire).

| Parameters | Direct option | Indirect option
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>age of the patient</td>
<td>younger</td>
<td>older</td>
</tr>
<tr>
<td>size of the decay</td>
<td>smaller</td>
<td>larger</td>
</tr>
<tr>
<td>tooth vitality</td>
<td>vital</td>
<td>non-vital</td>
</tr>
<tr>
<td>tooth colour</td>
<td>normal</td>
<td>non-treatable</td>
</tr>
<tr>
<td>facial anatomy</td>
<td>normal</td>
<td>altered</td>
</tr>
<tr>
<td>number of restoration</td>
<td>unrelated</td>
<td>unrelated</td>
</tr>
</tbody>
</table>

*using chemical treatments (vital & non-vital bleaching or microabrasion)

<table>
<thead>
<tr>
<th>Types of procedures</th>
<th>Typical procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non restorative</td>
<td>Aesthetic chemical treatments (bleaching, micro-abrasion)</td>
</tr>
<tr>
<td></td>
<td>Direct bonding</td>
</tr>
<tr>
<td>Minimally invasive</td>
<td>Direct bonding</td>
</tr>
<tr>
<td></td>
<td>Ultra-thin Veneers</td>
</tr>
<tr>
<td></td>
<td>Modern inlay and onlay techniques</td>
</tr>
<tr>
<td>Micro-invasive</td>
<td>Classical veneers, inlay and onlay</td>
</tr>
<tr>
<td>Macro-invasive</td>
<td>Crowns and bridges</td>
</tr>
</tbody>
</table>
conditions such as minor aesthetic form and colour corrections or extensive de-
cays in non-vital teeth, lead to evident solutions (direct and respectively indirect
restorations), while the majority of other
cases lie in a "gray zone" which actually
makes a pertinent choice more intricate.
A simple yet effective approach to this
dilemma relies on a sound bio-mechanical
analysis of the teeth potentially involved
in the treatment status, combined to the
usual functional and aesthetic analysis.
Then, having as a prime objective the re-
spect of tooth biology and conservation
guides clinician to a logical decisional tree,
such as presented in table I.

The "Bio-aesthetic" philosophy actual-
ly give priority to chemical color improve-
ments (vital bleaching, non-vital bleaching,
micro-abrasion), associated to direct composite
restorations and bonded ceramic restorations
for more extensive decays, limiting the use of
traditional full crowns to existing restoration
replacement and a few conditions of extreme
tooth "fragilization" (weakening). The progres-
sive treatment concept presented in table II
then summarizes the modern vision of aesthetic
restorative dentistry.
Figs. 3f & g. Rubber dam is placed to provide an optimal working environment. The full smile (premolar to premolar) is visible to facilitate procedures and especially to keep control of the smile line configuration.

Fig. 3h. A conservative preparation of the white spots is made to provide a minimum space for color correction (1–1.5 mm).

Fig. 3i. A first layer of dentin shade is placed to cover residual discoloured area and provide a correct chroma (body i2, inspiro).

Fig. 3j. The second layer is placed with an achromatic enamel providing proper translucency and opalescence (skin white, inspiro). Further form correction are made with the same enamel shade (no dentin is needed as layers are not thicker than 1–1.25 mm).
Fig. 3l. Detailed view of the corrected central and lateral incisors, using minimally invasive approach with direct composite.

Fig. 3m. Post-operative view showing a more harmonious smile configuration and uniform tooth colour.

Fig. 3n. Two years view showing no alteration of these partial composite restorations.

Figs. 3o & 3p. Anatomical details of the restoration micro-morphology and surface smoothness which proved stable over 2 years of clinical function (inspito, Edelweiss DR).
So far, the over-simplification (mono-incremental) as well as over-complexity (multi-incremental) of shading systems has tremendously limited the benefit of direct composite restorations.

New shading approach: the natural layering concept

To achieve perfect direct restorations has been for long and hypothetical aim due to the imperfect optical properties of many composite resins systems. So far, the over-simplification (mono-incremental) as well as over-complexity (multi-incremental) of shading systems has tremendously limited the benefit of direct composite restorations. Even today, the complexity of some systems is often associated to shading concepts mimicking ceramic systems (which are applied in totally different layer thicknesses) or the influence of over-meticulous clinicians who compensated deficient composite optical properties with intricate layering concepts. The use of the natural tooth as a model and the identification of respective dentine and enamel optical characteristics (tristimulus L*a*b* colour measurements and contrast ratio) has then been a landmark in developing better direct tooth coloured materials. The natural layering concept is then a simple and effective approach to creating highly aesthetic direct restorations which has become a reference in the field of composite restorations.

References

About the author

Didier Dietschi, DMD, PhD, Privat-Docent. Senior lecturer, Department of Cariology & Endodontics, School of Dentistry, University of Geneva, Switzerland. Adjunct Professor, Department of Comprehensive Care, Case Western University, Cleveland, Ohio. Private practice & Education Center – The Geneva Smile Center, Switzerland.

The Geneva Smile Center
2 Quai Gustave Ador
1207 Geneva
Switzerland